2,879 research outputs found

    LPM-Effect in Monte Carlo Models of Radiative Energy Loss

    Full text link
    Extending the use of Monte Carlo (MC) event generators to jets in nuclear collisions requires a probabilistic implementation of the non-abelian LPM effect. We demonstrate that a local, probabilistic MC implementation based on the concept of formation times can account fully for the LPM-effect. The main features of the analytically known eikonal and collinear approximation can be reproduced, but we show how going beyond this approximation can lead to qualitatively different results.Comment: 4 pages, 3 figures - To appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennessee; v2: removed line number

    Coherent Radiative Parton Energy Loss beyond the BDMPS-Z Limit

    Full text link
    It is widely accepted that a phenomenologically viable theory of jet quenching for heavy ion collisions requires the understanding of medium-induced parton energy loss beyond the limit of eikonal kinematics formulated by Baier-Dokshitzer-Mueller-Peigne-Schiff and Zakharov (BDMPS-Z). Here, we supplement a recently developed exact Monte Carlo implementation of the BDMPS-Z formalism with elementary physical requirements including exact energy-momentum conservation, a refined formulation of jet-medium interactions and a treatment of all parton branchings on the same footing. We document the changes induced by these physical requirements and we describe their kinematic origin.Comment: 8 pages, 4 figure

    Medium Modification of the Jet Properties

    Full text link
    In the case that a dense medium is created in a heavy ions collision, high-E_t jets are expected to be broadened by medium-modified gluon emission. This broadening is directly related, through geometry, to the energy loss measured in inclusive high-p_t particle suppression. We present here the modifications of jet observables due to the presence of a medium for the case of azimuthal jet energy distributions and k_t-differential multiplicities inside the jets.Comment: 4 pages, 3 postscript figures. Proceedings for Quark Matter 200

    The variety show: Why classical string musicians are exploring a multistyle approach to teaching

    Get PDF
    The Variety Show: Why Classical String Musicians are Exploring a Multistyle Approach to Music Kelly C. Wiedemann This case study examines the experiences of five classically trained string teachers who now include alternative styles in their teaching. The research questions are: (1) What factors inspire a classically trained string educator to begin teaching alternative styles to their students? (2) Why is it important to keep classical music in string pedagogy? (3) How have these teachers, their peers, students, and community reacted to multistylism? The interviews revealed four major points of motivation: Opportunities for developing creativity and finding a personal voice on their instrument, freedom to make mistakes without criticism, higher enrollment and retention rates, and increased job opportunities. Participants were committed to keeping classical music as a core part of their curriculum. Upon implementing a diverse curriculum, participants felt some resistance from students and peers, but for them, the positive reactions outweigh the negative. Based on the findings of this study, I argue that including alternative styles in a classical string curriculum, whatever the style may be, greatly increase professional & personal potential for both teacher and student

    How sensitive are high-pt electron spectra at RHIC to heavy quark energy loss?

    Get PDF
    In nucleus-nucleus collisions, high-pt electron spectra depend on the medium modified fragmentation of their massive quark parents, thus giving novel access to the predicted mass hierarchy of parton energy loss. Here we calculate these spectra in a model, which supplements the perturbative QCD factorization formalism with parton energy loss. In general, we find - within large errors - rough agreement between theory and data on the single inclusive electron spectrum in pp, its nuclear modification factor, and its azimuthal anisotropy. However, the nuclear modification factor depends on the relative contribution of charm and bottom production, which we find to be affected by large perturbative uncertainties. In order for electron measurements to provide a significantly more stringent test of the expected mass hierarchy, one must then disentangle the b- and c-decay contributions, for instance by reconstructing the displaced decay vertices.Comment: 9 pages RevTex, 4 eps-figures, asci-file containing numerical tables of results include

    Leading-particle suppression in high energy nucleus-nucleus collisions

    Get PDF
    Parton energy loss effects in heavy-ion collisions are studied with the Monte Carlo program PQM (Parton Quenching Model) constructed using the BDMPS quenching weights and a realistic collision geometry. The merit of the approach is that it contains only one free parameter that is tuned to the high-pt nuclear modification factor measured in central Au-Au collisions at sqrt{s_NN} = 200 GeV. Once tuned, the model is coherently applied to all the high-pt observables at 200 GeV: the centrality evolution of the nuclear modification factor, the suppression of the away-side jet-like correlations, and the azimuthal anisotropies for these observables. Predictions for the leading-particle suppression at nucleon-nucleon centre-of-mass energies of 62.4 and 5500 GeV are calculated. The limits of the eikonal approximation in the BDMPS approach, when applied to finite-energy partons, are discussed.Comment: 28 pages, 14 figures, final version, accepted by Eur. Phys. J.

    Jet quenching via jet collimation

    Full text link
    The strong modifications of dijet properties in heavy ion collisions measured by ATLAS and CMS provide important constraints on the dynamical mechanisms underlying jet quenching. In this work, we show that the transport of soft gluons away from the jet cone - jet collimation - can account for the observed dijet asymmetry with values of q^ L\hat{q}\, L that lie in the expected order of magnitude. Further, we show that the energy loss attained through this mechanism results in a very mild distortion of the azimuthal angle dijet distribution.Comment: 4 pages, 2 figures; Proceedings of the "Quark Matter 2011" conferenc

    Nuclear size and rapidity dependence of the saturation scale from QCD evolution and experimental data

    Full text link
    The solutions of the Balitsky-Kovchegov evolution equations are studied numerically and compared with known analytical estimations. The rapidity and nuclear size dependences of the saturation scale are obtained for the cases of fixed and running coupling constant. These same dependences are studied in experimental data, on lepton-nucleus, deuteron-nucleus and nucleus-nucleus collisions, through geometric scaling and compared with the theoretical calculations.Comment: 8 pages, 8 figures. Contribution based on talks given by J. G. Milhano and C. A. Salgado to the proceedings of ``Hard Probes 2004'', Ericeira (Portugal), November 4-10, 200

    The complex environment of the bright carbon star TX Psc as probed by spectro-astrometry

    Full text link
    Context: Stars on the asymptotic giant branch (AGB) show broad evidence of inhomogeneous atmospheres and circumstellar envelopes. These have been studied by a variety of methods on various angular scales. In this paper we explore the envelope of the well-studied carbon star TX Psc by the technique of spectro-astrometry. Aims: We explore the potential of this method for detecting asymmetries around AGB stars. Methods:We obtained CRIRES observations of several CO Δ\Deltav=1 lines near 4.6 μ\mum and HCN lines near 3 μ\mum in 2010 and 2013. These were then searched for spectro-astrometric signatures. For the interpretation of the results, we used simple simulated observations. Results: Several lines show significant photocentre shifts with a clear dependence on position angle. In all cases, tilde-shaped signatures are found where the positive and negative shifts (at PA 0deg) are associated with blue and weaker red components of the lines. The shifts can be modelled with a bright blob 70 mas to 210 mas south of the star with a flux of several percent of the photospheric flux. We estimate a lower limit of the blob temperature of 1000 K. The blob may be related to a mass ejection as found for AGB stars or red supergiants. We also consider the scenario of a companion object. Conclusions: Although there is clear spectro-astrometric evidence of a rather prominent structure near TX Psc, it does not seem to relate to the other evidence of asymmetries, so no definite explanation can be given. Our data thus underline the very complex structure of the environment of this star, but further observations that sample the angular scales out to a few hundred milli-arcseconds are needed to get a clearer picture

    On the jet spectrum in nucleus-nucleus interactions

    Full text link
    We derive the inclusive transverse spectrum of minijets in nuclear collisions at very high energies by assuming that the nuclear S-matrix factorizes into a product of elastic S-matrices for elementary partonic collisions. Interference effects and, in particular, the contribution of loop diagrams are fully taken into account in the derivation of the spectrum, which is shown to coincide with the result earlier obtained by superposing the elementary interactions incoherently. A quantitative analysis confirms that the deformation induced by multiple collsions is a large effect at RHIC and LHC energies, for transverse momenta ~ 20 GeV.Comment: text in LaTex, 4 figures in P
    • …
    corecore